Health monitoring and surveillance from social media

A discussion of past work, progress, easy and difficult tasks

Abeed Sarker (@sarkerabeed)
Research Associate
Department of Biostatistics, Epidemiology and Informatics

03/15/2016
Health Language Processing lab overview

❖ Focus areas
 • Social media
 • Medical literature
 • Electronic health records/expert authored texts

❖ Sample current (and upcoming) projects
 • Deriving knowledge from drug-related chatter in social media
 – Primarily Twitter
 • Safety surveillance of nutritional products
 • Aiding phylogeography of zoonotic viruses
 • Assessing the accuracy of antibiotic prescriptions automatically
 • Text classification, information extraction and normalization of various types of health-related texts

❖ Website: https://healthlanguageprocessing.org/
Presentation overview

- Social media mining for health
 - Why social media?

- Pharmacovigilance from social media

- Easy and difficult tasks in pharmacovigilance from social media
 - Annotation, classification, extraction, normalization, signal generation

- Future possibilities in pharmacovigilance from social media

- Other tasks utilizing social media
 - Prescription medication abuse
 - Cohort identification and monitoring using social media (e.g., pregnant women)
Why social media for health?

Health and internet

- 26% of internet users actively discuss health information. Of that group …
 - 30% *changed behavior* as a result
 - 42% discussed *current* medical conditions

- Abundance of health-related knowledge online

Trends—U.S.A

Trends in social media usage among different age groups since 2005.

Progress and possibilities

- Growing interest - from just over 100 to 2000 publications including “social media” or “social network” in PubMed over the last 10 years:
 - Early approaches used keywords and hashtags—e.g., for monitoring flu spread (Szomszor et al., 2010; Lampos et al., 2010)
 - Language analysis of social media and lexicon-based approaches (Schwartz et al., 2013; Leaman et al., 2010)
 - NLP-intensive/learning-based approaches (pharmacovigilance, user behavior analysis, detection of topics)

- Possibilities in epidemiology: how do we get observations over time for specific groups that share particular characteristics?

- Combining social media with other sources
 - e.g., in flu outbreaks, pharmacovigilance
Projects/studies on social media mining

- Pharmacovigilance
- Toxicovigilance/addictovigilance
- Nutritional supplements’ safety assessment
- User sentiment assessment for medications
- Cohort identification and monitoring
- Medication safety assessment during pregnancy
Pharmacovigilance from social media

- The activities relating to the detection, assessment, understanding and prevention of adverse effects attributable to prescription drugs

- Pharmacovigilance begins during clinical trials and continues after the drug is released into the market

- Due to limitations of clinical trials, not possible to fully assess the consequences of taking a specific drug prior to its release
 - e.g., Vioxx®—between 88,000 and 140,000 cases of serious heart disease

- Public health problem
 - deaths and hospitalizations numbering in millions (up to 5% hospital admissions, 28% emergency visits, and 5% hospital deaths), and associated costs of about seventy-five billion dollars annually
Pharmacovigilance from social media

- What do systematic reviews tell us?
 - Under-reporting is a problem in current surveillance systems. (37 studies from 12 countries) showed median under-reporting rate was 94% (82-98%). For serious/severe, 85%.

 - Abundant reports in SM. (29 studies that compared SM to other sources) showed a higher frequency of adverse events was found in social media and that this was particularly true for ‘symptom’ related and ‘mild’ adverse events.

 - Patient reporting brings different perspective, more info. (34 studies) Patient reporting brings novel information, more detail, info on severity and impact of ADRs in daily life.
Challenges

- **Data collection**
 - Drug names are often misspelled
 - Other misspellings

- **Noise**
 - Data imbalance (majority of posts contain no ADRs)
 - Adverse reactions are often expressed creatively
 - Posts lack context

- **Availability and incompleteness**
 - Complete data about individual cases may not be available
 - High dropout rate

- **Real world problems are either too easy or too difficult to solve** – Mark Johnson (Macquarie University)
Twitter ADR lingo

- HA! Not if you're on #Seroquil. EXTREMELY vivid dreams that stay in conscious memory. Very #Freaky! Any idea why?

- I'm def suing cymbalta. I can't wait until its out of my system. Get out!!!!!!! Nowwww!!!!!! You turn peaceful people into the hulk!

- Apparently, Baclofen greatly exacerbates the "AD" part of my ADHD. Average length of focus today: about 30 seconds.

- The 100mg tabs of trazodone my gp prescribed are too much, now that I don't take them every night. Still zombieish after an hour awake

- Gone from 50mg to 150mg of Serequel last night. Could barely wake up this morning and I feel like my body is made of lead
Sources for pharmacovigilance research

- **Twitter**
 - Large user base (319 monthly active users now)
 - Publicly available API with large dataset available
 - Possible to share and distribute data
 - Noisy chatter
 - Increasing bots

- **DailyStrength**
 - Online health community with over 500 support groups
 - Targeted and detailed posts
 - Smaller user base
 - Not possible to redistribute data for research
Social media mining pipeline

- Social Media
 - Data Collection
- Raw Data
 - Classification
- Filtered Data
 - ADR Extraction
- Drug-ADR Pairs
 - Statistical Analysis
 - Generalizing ADR mentions
 - What’s the denominator?
 - Other epidemiological questions.
 - How do we find rare ADRs?

Other resources (e.g. lexicons, topics)

Needs mapping/normalization
Data collection and annotation

- Phonetic spelling variants for capturing misspelled medication names
 (http://diego.asu.edu/Publications/ADRSpell/ADRSpell.html)
 - Seroquel -> seraquil, seroquil etc.

- Binary and full ADR annotations
 - Mostly available publicly

- Multiple trained annotators + pharmacology expert to resolve annotation disagreements
 - Many disagreements, many fights!
 - Iterations!
Annotation example

... works to calm mania or depression but zonks me and scares me about diabetes issues reported.

Other: diabetes

Indication: crying (C0010399)

Indication: depression (C001157)

ADR: drowsiness (C0013144)

ADR: emotional indifference (C0001726)

... stops me from crying most of the time, blocks most of my feelings
Classification

- Generate a large set of features, representing semantic properties (e.g., sentiment, polarity, and topic), from short text nuggets
 - Combine training data from different corpora in attempts to boost classification accuracies
 - Effort in resource creation/adaptation pays off
 - SVMs work great!

- Data and resources available
 - http://diego.asu.edu/Publications/ADRCClassify.html
 - https://bitbucket.org/asarker/adrbinaryclassifier or https://bitbucket.org/pennhlp/adrbinaryclassifier

- PSB 2016 shared task; possibly AMIA 2017
 - http://diego.asu.edu/psb2016/task1data.html
Classification performances

Leave-one-out classification scores over the three data sets showing how accuracies and ADR F-scores are affected as one feature is removed from the set.

<table>
<thead>
<tr>
<th>Features</th>
<th>TW</th>
<th>DS</th>
<th>ADE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>ADR F-score</td>
<td>Accuracy</td>
</tr>
<tr>
<td>All</td>
<td>86.2</td>
<td>0.538</td>
<td>83.6</td>
</tr>
<tr>
<td>N-grams</td>
<td>80.7</td>
<td>0.424</td>
<td>82.6</td>
</tr>
<tr>
<td>UMLS STs and CUIs</td>
<td>85.7</td>
<td>0.505</td>
<td>82.8</td>
</tr>
<tr>
<td>Syn-set expansions</td>
<td>86.1</td>
<td>0.545</td>
<td>84.0</td>
</tr>
<tr>
<td>Change phrases</td>
<td>87.1</td>
<td>0.521</td>
<td>83.9</td>
</tr>
<tr>
<td>ADR lexicon match</td>
<td>86.1</td>
<td>0.492</td>
<td>83.5</td>
</tr>
<tr>
<td>Sentitword score</td>
<td>86.2</td>
<td>0.530</td>
<td>82.8</td>
</tr>
<tr>
<td>Topics</td>
<td>86.1</td>
<td>0.535</td>
<td>83.7</td>
</tr>
<tr>
<td>Other features</td>
<td>86.9</td>
<td>0.534</td>
<td>83.6</td>
</tr>
</tbody>
</table>

TW Actual vs. Predicted F-score

- TW

DS Actual vs. Predicted F-score

- DS

TW with additional features

- TW + ADE
- TW + DS

DS with additional features

- DS + ADE
- DS + TW

TW + ADE	0.538
TW + DS	0.545
TW + TW	0.597*
DS + ADE	0.674
DS + TW	0.704*
ADR extraction: ADRMine

- Automatically extract exact ADR mentions (which can be mapped)
 - Long term goal: automatically extract health information

a) #Schizophrenia\textsubscript{indication} #Seroquel did not suit me at all. Had severe tremors\textsubscript{ADR} and weight gain\textsubscript{ADR}.

b) I felt awful, it made my stomach hurt\textsubscript{ADR} with bad heartburn\textsubscript{ADR} too, horrid taste in my mouth\textsubscript{ADR} tho it does tend to clear up the infection\textsubscript{Indication}.
ADR extraction: ADRMine

- Conditional random fields (CRF) classifier

- Word/phrase generalization using standard tools (e.g., MetaMap) performs poorly

- Clustering similar terms/phrases help in capturing non-standard expressions

I had the side effect of a bloody noseADR and hated it.
Made me feel numbADR and apatheticADR to pretty much everything ... made me gain about 40 lbsADR.
Working well no side effects from this besides cotton mouthADR.
Sample clusters

<table>
<thead>
<tr>
<th>Cluster#</th>
<th>Topic</th>
<th>Examples of clustered words</th>
</tr>
</thead>
<tbody>
<tr>
<td>c₁</td>
<td>Drug</td>
<td>abilify, adderall, ambien, ativan, aspirin, citalopram, effexor, paxil, …</td>
</tr>
<tr>
<td>c₂</td>
<td>Signs/Symptoms</td>
<td>hangover, headache, rash, hive, …</td>
</tr>
<tr>
<td>c₃</td>
<td>Signs/Symptoms</td>
<td>anxiety, depression, disorder, ocd, mania, stabilizer, …</td>
</tr>
<tr>
<td>c₄</td>
<td>Drug dosage</td>
<td>1000mg, 100mg, .10, 10mg, 600mg, 0.25, .05, …</td>
</tr>
<tr>
<td>c₅</td>
<td>Treatment</td>
<td>anti-depressant, antidepressant, drug, med, medication, medicine, treat, …</td>
</tr>
<tr>
<td>c₆</td>
<td>Family member</td>
<td>brother, dad, daughter, father, husband, mom, mother, son, wife, …</td>
</tr>
<tr>
<td>c₇</td>
<td>Date</td>
<td>1992, 2011, 2012, 23rd, 8th, april, aug, august, december, …</td>
</tr>
</tbody>
</table>
Extraction performance

<table>
<thead>
<tr>
<th>Method</th>
<th>DS</th>
<th></th>
<th></th>
<th>Twitter</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F</td>
<td>P</td>
<td>R</td>
<td>F</td>
</tr>
<tr>
<td>MetaMap<sub>_ADR_LEXICON</sub></td>
<td>0.470</td>
<td>0.392</td>
<td>0.428</td>
<td>0.394</td>
<td>0.309</td>
<td>0.347</td>
</tr>
<tr>
<td>MetaMap<sub>_SEMANTIC_TYPE</sub></td>
<td>0.289</td>
<td>0.484</td>
<td>0.362</td>
<td>0.230</td>
<td>0.403</td>
<td>0.293</td>
</tr>
<tr>
<td>Lexicon-based</td>
<td>0.577</td>
<td>0.724</td>
<td>0.642</td>
<td>0.561</td>
<td>0.610</td>
<td>0.585</td>
</tr>
<tr>
<td>SVM</td>
<td>0.869</td>
<td>0.671</td>
<td>0.760</td>
<td>0.778</td>
<td>0.495</td>
<td>0.605</td>
</tr>
<tr>
<td>ADRMine<sub>_WITHOUT_CLUSTER</sub></td>
<td>0.874</td>
<td>0.723</td>
<td>0.791</td>
<td>0.788</td>
<td>0.549</td>
<td>0.647</td>
</tr>
<tr>
<td>ADRMine<sub>_WITH_CLUSTER</sub></td>
<td>0.860</td>
<td>0.784</td>
<td>0.821</td>
<td>0.765</td>
<td>0.682</td>
<td>0.721</td>
</tr>
</tbody>
</table>

CRF Features

<table>
<thead>
<tr>
<th>CRF Features</th>
<th>DS</th>
<th></th>
<th></th>
<th>Twitter</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F</td>
<td>P</td>
<td>R</td>
<td>F</td>
</tr>
<tr>
<td>All</td>
<td>0.856</td>
<td>0.776</td>
<td>0.814</td>
<td>0.765</td>
<td>0.682</td>
<td>0.721</td>
</tr>
<tr>
<td>All – lexicon</td>
<td>0.852</td>
<td>0.781</td>
<td>0.815</td>
<td>0.765</td>
<td>0.646</td>
<td>0.701</td>
</tr>
<tr>
<td>All – POS</td>
<td>0.853</td>
<td>0.776</td>
<td>0.812</td>
<td>0.754</td>
<td>0.653</td>
<td>0.700</td>
</tr>
<tr>
<td>All – negation</td>
<td>0.854</td>
<td>0.769</td>
<td>0.810</td>
<td>0.752</td>
<td>0.646</td>
<td>0.695*</td>
</tr>
<tr>
<td>All – context</td>
<td>0.811</td>
<td>0.665</td>
<td>0.731*</td>
<td>0.624</td>
<td>0.498</td>
<td>0.554*</td>
</tr>
<tr>
<td>All – cluster</td>
<td>0.851</td>
<td>0.745</td>
<td>0.794*</td>
<td>0.788</td>
<td>0.549</td>
<td>0.647*</td>
</tr>
<tr>
<td>Context + cluster</td>
<td>0.860</td>
<td>0.784</td>
<td>0.821*</td>
<td>0.746</td>
<td>0.628</td>
<td>0.682*</td>
</tr>
</tbody>
</table>
Errors

False Negative ADRs

- Too descriptive/vague-- explained with general words: loved it, except for [not being able to be woken up at night].
- Lack of context (too short phrases or irrelevant context): [Ecstasy] side effects
- Misclassified to indications: I have terrible [pain in joints]
- Annotation guideline: Used to work, [does not anymore]
- Spelling error: ... Started [hallucinating] ... NOT cool !!!
- Idiomatic expressions: didn't work I [pack the fat on] too; My [hair seems to be shedding], ...

False Positive ADRs

- Indications/beneficial effects: He is no longer in pain and [vomiting] all the time.
- Negative modifiers: Finding the right dose is a [nightmare]; Its [annoying] but the benefits are worth it.
- Non-ADR general clinical terms: [Tired] of the side effects; I am very [chemical sensitive].
- Non-ADR symptom descriptions: I have really bad spasms that [keep me up all times] of day and night.
Data, resources and tools

- PSB 2016 shared task:
 http://diego.asu.edu/psb2016/task2data.html
- Data, tools and resources at:
 http://diego.asu.edu/Publications/ADRMine.html
Concept normalization

- Good performance for classification and extraction tasks, but extracted ADRs need to be mapped to standard IDs (or grouped together) to generate reliable signals.

- Good accuracy required for reliable signal generation.

- Example

<table>
<thead>
<tr>
<th>Increase my weight</th>
<th>Weight gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>gain so much weight</td>
<td>(c0043094)</td>
</tr>
<tr>
<td>made me heavy</td>
<td></td>
</tr>
<tr>
<td>gaining weight</td>
<td></td>
</tr>
<tr>
<td>weight gain</td>
<td></td>
</tr>
<tr>
<td>making me fatter</td>
<td></td>
</tr>
</tbody>
</table>
Normalization approach

- **Exact match**
- **Definition match**
- **Semantic match**

Semantic relatedness kernels
- PMI
- LSA
- NGD
- Gloss Vector
- Lesnik

Resources
- PubMed Dental Journals
- Yahoo Search
- Google Search
- PubMed Clinical Journals
- PubMed Nursing Journals

MSR+Resource Matcher
- **Feature Calculator**

Training/Testing pairs set
- word1, word2, expected1
- word3, word4, expected2
- ...

SVMLight
- **Evaluator**

Testing Mode
- word1, word2, feature1, feature2, ..., expected1
- word3, word4, feature1, feature2, ..., expected2
- ...

Training Mode
- word1, word2, expected1, predicted1
- word3, word4, expected2, predicted 2
- ...

SVM model
Normalization performance

<table>
<thead>
<tr>
<th>Annotated Phrase</th>
<th>Expected</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>depressed</td>
<td>c0011570-Depression</td>
<td>c0011570</td>
</tr>
<tr>
<td>increase my weight</td>
<td>c0043094-Weight gain</td>
<td>c0043094</td>
</tr>
<tr>
<td>gain so much weight</td>
<td>c0043094-Weight gain</td>
<td>c0043094</td>
</tr>
<tr>
<td>fewer hours sleep</td>
<td>c0235161-Sleep loss</td>
<td>c0235161</td>
</tr>
<tr>
<td>feel like need to throw up</td>
<td>c0027497-Nausea</td>
<td>c0917799-Hypersomnia</td>
</tr>
<tr>
<td>just eat, and eat</td>
<td>c0232461-Apetite increase</td>
<td>c0015672-Fatigue</td>
</tr>
<tr>
<td>falling asleep every day</td>
<td>c0541854-Daytime sleepiness</td>
<td>c0917801-Insomnia</td>
</tr>
</tbody>
</table>
ADR signal generation

- **Safety signal**— reported information on a causal relationship between an adverse reaction and a drug (WHO)

- The main approach for identifying drug safety signals from reported data (e.g., in FAERS) is to detect the *disproportionality* of reports about a given drug’s adverse events

- Popular methods include:
 - Proportional reporting ratios (PRR)
 - Reporting odds ratios (ROR)
 - Lift
 - Bayesian Confidence Propagation Neural Network (BCPNN)
 - Relative Risk (RR)
Direct disproportionality measures

Table II. A 2 × 2 Table for Disproportionality Calculation

<table>
<thead>
<tr>
<th></th>
<th>Reports with ADE j</th>
<th>Reports Without ADE j</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reports with drug i</td>
<td>$n_{i,j}$</td>
<td>$n_i - n_{i,j}$</td>
<td>n_i</td>
</tr>
<tr>
<td>Reports without drug i</td>
<td>$n_j - n_{i,j}$</td>
<td>$n - n_i - n_j + n_{i,j}$</td>
<td>$n - n_i$</td>
</tr>
<tr>
<td>Total</td>
<td>n_j</td>
<td>$n - n_j$</td>
<td>n</td>
</tr>
</tbody>
</table>

$$P_{RR} = \frac{n_{i,j}/n_i}{(n_j - n_{i,j})/(n - n_i)}.$$
$$\ln(P_{RR}) \pm 1.96 e^\sqrt{\frac{1}{n_{i,j}} - \frac{1}{n_i} + \frac{1}{n_j - n_{i,j}} - \frac{1}{n - n_i}}.$$

$$R_{OR} = \frac{n_{i,j}/(n_j - n_{i,j})}{(n_i - n_{i,j})/(n - n_i - n_j + n_{i,j})}.$$
$$\ln(R_{OR}) \pm 1.96 e^\sqrt{\frac{1}{n_{i,j}} + \frac{1}{n_i - n_{i,j}} + \frac{1}{n_j - n_{i,j}} + \frac{1}{n - n_i - n_j + n_{i,j}}}.$$
- Easy to interpret

- Widely used (e.g., the EMA\(^1\))

- For PRR
 - >= 2 indicator of disproportionality
 - >= two times the upper limit of CI – indicator of disproportionality
 - Validation is performed on a case by case basis

- Very sensitive (particularly for ADRs/drugs with low numbers of reports)
 - also why correct normalization is important

- Our approach:
 - Large set of tweets mentioning medications as denominator
Sample PRR charts

- Too big to fit in a slide…
- Fluoxetine (Prozac)
 - SIDER:
 - http://sideeffects.embl.de/drugs/3386/
- Adalimumab (Humira)
 - EverydayHealth (no SIDER entry)
 - http://www.everydayhealth.com/drugs/humira
Some medications may be more suitable for social media based ADR monitoring

Certain age-groups are more likely to be represented in the data

Significant information available regarding
- Tolerability
- Tolerance
- Potential for abuse

Cohorts can be identified over social media and their health-related information tracked
- e.g., pregnant women
Pregnancy cohort monitoring via SM

TW

Querying + Collection of posts

Manual annotation of announcements

Supervised classification of announcements

Timeline collection

DS

User detection

Timeline collection

Medication intake classification

Medication intake annotation

Deriving associations

Health-information analysis

Outcome detection + analysis

Health-information filtering

Timeline collection
Pregnancy announcements

- Queries (16 in total; ~60% true positives)
 - ‘I .* m .* x .* [weeks\|months] .* pregnant’
 - ‘having.*baby’
 - ‘my .* pregnancy’

- Samples
 - I think I could hit this woman in the head with my pregnancy belly and she still wouldn't offer me her seat #ttcproblems #TTC #Toronto
 - Tummy's flat as f*** all day then eat a slice of toast and I'm like 6 months pregnant
 - Everyone in my house is so inconsiderate sometimes. I'm 8 and a half months pregnant, I'm sick and I'm trying to sleep. Shut the f*** up
 - I'm having a baby JB day and it's killing me. I love him so much @justinbieber
 - My sister is five weeks and three days pregnant. I’m going to be an auntie oh my god
 - Girls will be two days pregnant already posting pictures talking bout “I’m getting big.”
Announcement classification + other tasks

- Recycled SVMs with basic features
- ~15k annotations, F-score: 0.88
- Collection of timelines for pregnant women
- Currently cohort is at ~100k; implemented pipeline should collect more
- Pilots studies:
 - Trimester detection
 - Medication mentions at each trimester
- Top 10 medication mentions (sample cohort of 15k)
Users post information about medication abuse on social media

- about to be cracked on **adderall** to survive today
- i’m just gonna shower and overdose on **Seroquel** so I’ll sleep until morning.
- popped **Adderall** tonight hahahahah let’s finish this 100 page paper
- an **oxycodone** high from snorting lasts for one hour, if it is swallowed, your looking at three hour high.
Adderall® vs. oxycodone abuse patterns

- Supervised classification to investigate patterns of abuse-related tweets (only ~6k Tweets)
- Low accuracy for classification, but Adderall® pattern matches manual analysis
Contact

- abeed@upenn.edu
- Twitter: @sarkerabeed
- Lab website: https://healthlanguageprocessing.org