Natural Language Processing for Health (HLP)
November 2018
Tweet @UPennHLP #HLPMeeting
Graciela Gonzalez-Hernandez
Contact: gragon@upenn.edu
Twitter: @gracielagon

https://healthlanguageprocessing.org
Program & Speaker List

- **Welcome/Introduction** – Abeed Sarker, Ph.D.

- **KEYNOTES (15 minutes + 15 minutes for questions each)**

 Twitter and Opioids: Correlations between Opioid-related discourse in Twitter and Regional Overdose Deaths
 Rachel Graves, MD
 HUP Emergency Medicine Resident, PGY1

 Automatically Detecting Self-Reported Birth Defect Outcomes on Twitter for Large-scale Epidemiological Research
 Ari Klein, Ph.D
 Health Language Processing Lab – Department of Biostatistics, Epidemiology, and Informatics
 University of Pennsylvania
Opioids in the Twittersphere

Rachel Graves MD
Emergency Medicine Resident (PGY1)
University of Pennsylvania
The Team

• **My supervisors and co-authors**—Raina Merchant MD MSHP FAHA, Zachary Meisel MD MPH MSHP, Dan Polsky PhD MPP

• **Computer and data scientist co-authors**—Christopher Tufts MS, Lyle Ungar MS PhD

• **Grant funding**—Philadelphia Department of Public Health

• **Special thanks** to Jeanmarie Perrone MD
I SLEPT GREAT LAST NIGHT

GOT A FULL 40 MINUTES
The Approach

• **Goal:** Determine whether Twitter data can be used to identify geographic differences in opioid-related discussion and whether opioid topics were significantly correlated with opioid overdose death rate

• **Method summary:**
 – Filter tweets (10 billion!) for “opioid keywords” (7/09-10/15)
 – Generate thematic topics (50) using *Latent Dirchlet Allocation (LDA)*, a machine learning analytic tool
 – Correlate topic distribution with census region, census division, and opioid overdose death rate
Key Findings

Unique opioid-related topics were significantly correlated with different Census Bureau divisions and with opioid overdose death rates at the state and county level.

- Drug-related crime, language of use, and online drug purchasing emerged as themes in various Census Bureau divisions.

- Drug-related crime, opioid-related news, and pop culture themes were significantly correlated with county-level opioid overdose death rates*, and online drug purchasing was significantly correlated with state-level opioid overdose death rates*.

*CDC WONDER database based on ICD-9 and ICD-10 codes
ASIDE: A FEW KEY TERMS
Latent Dirichlet Allocation (LDA)

• **LDA**: a generative statistical model that allows *sets of observations* to be explained by *unobserved groups* that explain why some parts of the data are similar

• For example, if observations are *words (84k tweets) collected into documents* it posits that each document is a mixture of a *small number of topics (50)* and that each word's presence is attributable to one of the document's topics.
Census Bureau Geographic Divisions
RESULTS
Generating Themes

<table>
<thead>
<tr>
<th>Theme</th>
<th>Example topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addiction</td>
<td>nights quit mountain addiction</td>
</tr>
<tr>
<td></td>
<td>nicotine control</td>
</tr>
<tr>
<td></td>
<td>harder rehab mary</td>
</tr>
<tr>
<td></td>
<td>jumping hooked</td>
</tr>
<tr>
<td></td>
<td>sea</td>
</tr>
<tr>
<td>Addiction treatment</td>
<td>therapy patients risk doctors</td>
</tr>
<tr>
<td></td>
<td>abuse generic</td>
</tr>
<tr>
<td></td>
<td>narcotic treat</td>
</tr>
<tr>
<td></td>
<td>painkillers</td>
</tr>
<tr>
<td></td>
<td>chronic treatment</td>
</tr>
<tr>
<td></td>
<td>form fda</td>
</tr>
<tr>
<td>Drug-related crime</td>
<td>arrested police oz seizures</td>
</tr>
<tr>
<td></td>
<td>arrested airportseize</td>
</tr>
<tr>
<td></td>
<td>seized smuggling</td>
</tr>
<tr>
<td></td>
<td>bust</td>
</tr>
<tr>
<td></td>
<td>large</td>
</tr>
</tbody>
</table>
Correlating Themes with Census Bureau Divisions
Correlating Themes with Overdose Death Rates

<table>
<thead>
<tr>
<th>Geographic division</th>
<th>Theme (r value)</th>
<th>Example topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>County</td>
<td>Drug-related crime (r = 0.331)</td>
<td>police, jail, charged, dealer, arrested, ring, daughter, county, overdose, charges, prison, trafficking, bust, news, sentenced</td>
</tr>
<tr>
<td>State</td>
<td>Online drug purchasing (r = 0.449)</td>
<td>online, prescription, offers, buy, fast, cheap, delivery, overnight, shipping</td>
</tr>
</tbody>
</table>
Conclusion

Linguistic themes from Twitter are significantly correlated with Census Bureau divisions and with county- and state-level opioid overdose death rates. Content of opioid-related topics from Twitter may offer important insight into the drivers and consequences of opioid misuse in different areas.
Automatically Detecting Self-Reported Birth Defect Outcomes on Twitter for Large-scale Epidemiological Research

Ari Z. Klein, Abeed Sarker, Davy Weissenbacher, Graciela Gonzalez-Hernandez

Ari Z. Klein, Postdoctoral Researcher
Email: ariklein@pennmedicine.upenn.edu
Health Language Processing Lab (https://healthlanguageprocessing.org)
Department of Biostatistics, Epidemiology, and Informatics

Nov. 1, 2018 | HLP Special Interest Group
Background

- Birth defects are the leading cause of infant mortality in the United States.
- The causes of the majority of birth defects remain unknown.
- Methods for observing pregnancies with birth defect outcomes remain limited.
 - Pregnant women are largely excluded from clinical trials.
 - Data from animal reproductive studies may not translate to human risk factors.
 - Pregnancy exposure registries have a variety of limitations.
- 36% of Americans between ages 18-29 use Twitter.
Related Work

 - Developed an NLP and machine learning pipeline for automatically collecting and storing the publicly available tweets of users who have announced their pregnancy on Twitter.

- **Klein AZ, et al.** Social media mining for birth defects research: A rule-based, bootstrapping approach to collecting data for rare health-related events on Twitter. *Journal of Biomedical Informatics* 2018;87:68-78.
 - Identified 195 Twitter users whose pregnancies with birth defect outcomes could be observed via their publicly available tweets.

 - Studied the identified cohort and a comparator group, and found evidence on Twitter that taking medication during pregnancy is associated with a higher risk of birth defect outcomes.
Objective

- To develop methods for automatically detecting tweets by mothers reporting that their child has a birth defect
 - The relatively small Twitter cohort initially identified prevented our epidemiological study from focusing on individual birth defects.
 - Additional Twitter users are being constantly added to our pregnancy database over time.
 - Exploiting social media on a scale potentially large enough for studying individual birth defects depends on methods capable of automatically identifying cohorts.
Corpus

- **22,999 annotated tweets that mention birth defects**
 - 1,192 (5.12%) “defect” tweets
 - Refer to a person who has a birth defect and identify that person as the user’s child
 - Ex.: “My little miracle, we are so blessed to have you #hypoplasticleftheartsyndrome #hlhs”
 - 1,196 (5.20%) “possible defect” tweets
 - Ambiguous about whether a person referred to has a birth defect and/or is the user’s child
 - Ex.: “He was born with hypospadias that fixed itself so he’s going to get circumsized in 2 weeks. 😞😞😞”
 - 20,611 (89.67%) “non-defect” tweets
 - Do not refer to a person who has or may have a birth defect and is or may be the user’s child
 - Ex.: “Can’t watch this cleft palette infomercial, I can’t wake up depressed”

- **Inter-annotator agreement: \(\kappa = 0.86 \) (Cohen’s kappa)
Supervised Classification

- Trained and evaluated NB, SVM, and Bi-LSTM RNN classifiers
- Pre-processing and features
 - NB and SVM
 - Lowercase, stem, remove non-alpha characters, normalize user names, URLs, birth defects, and people’s names; word n-grams
 - Bi-LSTM
 - Word embeddings learned from GloVe word vectors trained on 2 billion tweets; tweets pre-processed the same as word vectors
- Data-level approaches for class imbalance
 - Under-sampling majority (“non-defect”) class
 - Removed lexically similar “non-defect” tweets in the training set
 - Removed “non-defect” tweets lexically similar to false negative tweets in the validation set
 - Random under-sampling controls
 - Over-sampling minority (“defect” and “possible defect”) classes
 - Over-sampling with replacement
 - Synthetic Minority Over-sampling Technique (SMOTE)
Results

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Training Set</th>
<th>F (+)</th>
<th>F (?)</th>
<th>F (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>original, imbalanced training set (14,716)</td>
<td>0.35</td>
<td>0.25</td>
<td>0.89</td>
</tr>
<tr>
<td>SVM</td>
<td>original, imbalanced training set (14,716)</td>
<td>0.62</td>
<td>0.52</td>
<td>0.96</td>
</tr>
<tr>
<td>SVM</td>
<td>under-sampling based on similar majority class tweets (5,551)</td>
<td>0.62</td>
<td>0.43</td>
<td>0.96</td>
</tr>
<tr>
<td>SVM</td>
<td>random under-sampling control set (5,551)</td>
<td>0.62</td>
<td>0.49</td>
<td>0.96</td>
</tr>
<tr>
<td>SVM</td>
<td>under-sampling based on similarity to false negative tweets (8,015)</td>
<td>0.58</td>
<td>0.51</td>
<td>0.95</td>
</tr>
<tr>
<td>SVM</td>
<td>random under-sampling control set (8,015)</td>
<td>0.62</td>
<td>0.50</td>
<td>0.96</td>
</tr>
<tr>
<td>SVM</td>
<td>over-sampling instances of minority classes with replacement (40,675)</td>
<td>0.62</td>
<td>0.46</td>
<td>0.95</td>
</tr>
<tr>
<td>SVM</td>
<td>SMOTE on original training set (39,148)</td>
<td>0.62</td>
<td>0.51</td>
<td>0.96</td>
</tr>
<tr>
<td>Bi-LSTM</td>
<td>original, imbalanced training set (14,716)</td>
<td>0.60</td>
<td>0.35</td>
<td>0.96</td>
</tr>
<tr>
<td>Bi-LSTM</td>
<td>under-sampling based on similar majority class tweets (5,551)</td>
<td>0.55</td>
<td>0.33</td>
<td>0.91</td>
</tr>
<tr>
<td>Bi-LSTM</td>
<td>random under-sampling control set (5,551)</td>
<td>0.54</td>
<td>0.37</td>
<td>0.92</td>
</tr>
<tr>
<td>Bi-LSTM</td>
<td>under-sampling based on similarity to false negative tweets (8,015)</td>
<td>0.48</td>
<td>0.36</td>
<td>0.90</td>
</tr>
<tr>
<td>Bi-LSTM</td>
<td>random under-sampling control (8,015)</td>
<td>0.59</td>
<td>0.45</td>
<td>0.95</td>
</tr>
<tr>
<td>Bi-LSTM</td>
<td>over-sampling instances of minority classes with replacement (40,675)</td>
<td>0.55</td>
<td>0.45</td>
<td>0.95</td>
</tr>
</tbody>
</table>

- **NB**: Outperformed by SVM and Bi-LSTM for all three classes
- **SVM**: Under-/over-sampling did not improve performance for any of the classes.
- **Bi-LSTM**: Most under-/over-sampling improved performance for the “?” class, but similarity-based under-sampling methods did not outperform their controls. Overall, Bi-LSTM did not outperform SVM.
Conclusions and Future Work

- Our automatic NLP and classification methods are the first step towards scaling social media for birth defects research.
- Deep neural network-based classifiers are outperformed for imbalanced social media data.
- Over-sampling methods for addressing class imbalance with CNNs may not generalize to RNNs.
- Future work will focus on automating user-level analyses for cohort inclusion.